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1. Find the first 5 terms in the series representation (about x =0 )of the general

solution of the following linear, second order ODE:
(2x3 —1) y" —6x°y'+6xy =0.
15 points
Solution

Writing

y=y()=>ax"=>ax"
n=0

we get (0.1) is

(0.1)

(0.2)

0=(2x°-1)y"-6x’y'+6xy = > (2x*~1)n(n-1)a,x"* —6na,x’x"" +6xa,x’

=Y 2n(n-

n?— n+3) (n+3)(n+2)an+3)x”+l
(n-3)a, —(n+3)(n+2)a,,, x"*

=Y(2

=22
2(n-1)(n-3)

an+3zman, n=-10,12,...

) :2(n—2)(n—4)

"2 (n+2)(n+1)
So

a,,,n=012,....

"™ —n(n-1)a,x"*—6na,x"" +6a,x""

(n-1)a
_ZZn(n -1)a, n+l—(n+3)(n+2)an+3x —6na, x""*
(n-

(0.3)



% =82 = 2((00; 22))(((? +_1L;) %4=62,=6:0=0,
T e T 2((22+_ 22))((22; S) a =00 (0.4)
== 2((33; 22))((33 +_1£;) 2= 15% =15 0=0

2(4-2)(4-4)
A =, = (4+2)(4+1) a, :0-33 =0,
a,ca, =0,a,ca;, =0,a,ca; =0,....
Thus the general solution is in fact polynomial: (0.4) implies (0.2) gives

y(x) =X’ +ax +a,x’ +a,x’ =a, +a,x+0-x* +a,x° 05
=3, (1+x°)+ax. (03)

2. According to the relevant theorem, what is the radius of convergence of the
series representation of the general solution of (0.1)? Do your results on the
previous problem contradict this? Explain.

10 points
Solution

We rewrite (0.1) as

v 6x? Ve 6x
2x3-17  2x*-1
which identifies certain functions indicated in the relevant theorem as both having radius

y=0 0.6)

of convergence of precisely p =1/%2. Thus, guaranteed, the radius of convergence of
the series representation of the general solution of (0.1) is at least that big. On the
other hand, the actual solution had infinite radius of convergence. But this does not
contradict the theorem; the theorem only gives a lower bound on that radius.



3. By use of the definition, compute the Laplace transform F(s)of f (t) :=e*, where
a=a-+ifis a complex number with real part ¢ and imaginary part . For which
values of sis your formula valid?

10 pts.
Solution:
By definition

—(s—a)t oo
e 1
—0—

—(s-a) |, ~(5-3) (0.7

F(s) = J':O e f(t)dt = J'Om e e dt = J'Om e gt =

1

s—a
the last steps valid iff Re(s—a) >0« Res>Rea=«. If sis considered to only be real

(reasonable in this course), this is the restriction s>Rea=«.

4. By use of the definition of Laplace transform, show, at least formally, that

L[)(s)=sL[](s)- (0), (0.8)

at least for large enough s (and f of exponential order).

10 points
Solution:

By definition, and using integration by parts (formally), we have

L)) = I0+we’5‘ f'(t)dt = J'Ome’“df M=e*f@®] - jf f (t)de ™
—e ™ f (w0) - (0)— jo*w f(t)(-s)edt =0 f(0)+s jf f(t)edt (0.9)
——f(0)+sL[f](s)=sL[f](s)- f(0),

where we also used f is of exponential order, so that for large enough s

lime™ f (t) = 0. (0.10)

t—-+o0



5. Use (0.8) directly to show that

L[f"](s)=s*L[f](s)-sf (0)- f'(0) (0.11)

5 points
Solution:

Replacing everywhere in (0.8) f with f'yields

L[f”](s):l:[(f')’}(s):slz[f'](s)— £'(0), (0.12)

and using (0.8) in this then gives

L[f"](s)=sL[f'](s)- f'(0)=5s(sL[ f](s)- f(0))-f'(0)

(0.13)
=s’L[f](s)-sf (0)-f'(0),
which gives/is (0.11).
6. By use of the Laplace transform, solve the IVP
y'=ay, y(0) =y, (0.14)
10 points
Solution:

Applying the transform to both sides of the ODE, and using (0.8) with the given initial
data we get (with linearity)

LIY](s)=sL[y](s)-y(0)=sL[y](s) -y, =aL[y](s) = L[ay](s),  (0.15)
for large enough s, i.e.(for those s's)

(s—a)li[y](s>=yo@ﬁ[y](s>=sy_—°a=£[yoea‘](s)@y(t)=yoeat- (0.16)

(In the last step we used that the Laplace transform is a one-to-one map on the space
of continuous functions.)

7. By means of the definition of Laplace transform, at least formally show that for
c>0



L[ f(t-c)u.®])=eL[ f(t)](s), (0.17)
at least for big enough s (when L] f (t)](s) exists for big enough s).

10 points
Solution:

By definition of all the objects involved,

L[ f(t-c)u® ()= " f(t-c)u e dt=["f (t-c)edt

o (0.18)
_[™ =s(t+¢) 44 _ q-cs [T Sty . ACS
= [ (e Idt=e[ " f(t)etdt=e "L f(t)](s).
8. By means of the Laplace transform, solve the I.V.P.
y"=2y'+37y=0, y(0)=0, y'(0)=1. (0.19)
15 points
Solution:

Taking the Laplace transform of both sides of the ODE in (0.19) and using (0.8) and
(0.11) with the data in (0.19) we get

s Ly](s)-1-2sL[y](s)+37L[y](s)
=s?L[y](s)-sy(0)-y'(0)- 2(s£[y](s) - y(O))+37£[y](s) =0
=
1= (52 —23+37)£[y](s) = ((5—1)2 +62)£[y](s)
=N (0.20)

1 1 6 1, .
L]y](s)= (8—1)2 s _E(s—l)z T8 —L{Ee sm(6t)}(s)

fe—g

y(t):%etsin(Gt).




9. By means of the Laplace transform, solve the I.V.P.

sint, 0<t<2r
"+y="1(t)= ' ", y(0)=y'(0)=0. 0.21
y'+y (){ 0 2r<t y(0)=y'(0) (0.21)
Note that after t = 2z the undamped system is no longer driven. What is the

amplitude of the oscillation after that time?

Feel free to use, if helpful, that

L{%sin(th%tcos(t)}(s) :%(L[sin(t)](s)+£[t cos(t)](s)) :l[si ot j: oSt Cos(t)dtj

1 1/ 1 d
( J'e cos(t)dtj 2(52+1_££[Cos(t)](s)j

s+1 ds Jo

_1[ 1 d s j_l 1 _(52+1)—s-25
S 2(s?+1 dss?+1) 2| s*+1 (52+1)2

1
2

2

1
2(32 ) (s +1)
L[lsm(t)—ltcos(t)}(s)—E(L sin(t)](s) - L[tcos(t)](s)) ( ! ) ‘S‘tcos(t)dt)
2 2 2 s?41 Jo
1/ 1 1/ 1 d
E(s +—[ e cos(t)dt} 2[52+1+EL[cos(t)](s)J
1( S j 1[ 1 (s%l)—s-Zs}
== == +
2\ 1 dss +1) 2| s*+1 (32+1)2
1 ( +1) 2s° 1
2 (241)  (s241)
(0.22)
15 points
Solution:

For positive t, rewrite the r.h.s. of the equation as



f(t) =sint(1-u,,(t)) =sint—sintu, (t) =sint—sin(t—2x)u,,(t)
| 1 s 1 | 1-e? (0.23)
[:LZH 52+J() f{ s*+1 }()
So taking the Laplace transform of both sides of the ODE with (trivial) data we get (by
shift theorems) that

1 _ p27s —27S

o L[y =222 = £[h®) - h(t—27)u,, 1] ()
(52 +1)

(52 +1)£[y](s) S

S
y(t) = h(t) -h(t - 27)u,, (1),

where, by hint (0.22),

h(t) :%sin(t)—%tcos(t). (0.24)

Note that for t > 27 we have

y(t) = h(t) —h(t - 27)u,_(t) = h(t) - h(t - 27) :%sin(t) —%tcos(t) —(%sin(t —27) —%(t — 27 cos(t - 2::))

= %sin(t) —%t cos(t) —(%sin(t) —%(t -~ 27z)cos(t)) = —mcos(t).

(0.25)
Thus the amplitude of the oscillation after t = 2z is clearly .

10.By means of the Laplace transform, solve the 1.V.P.

y'+y=4(t-1), y(0)=y'(0)=0.
10 Points

Solution

Taking the Laplace transform of both sides of the ODE with (trivial) data we get (by shift
and other theorems) that



(s°+1)L[y](s) =€~ <= L[y](s) = 55;1 = L[sin(t-1)u,(t)](s)

& (0.26)
y(t) =sin(t —1)u, (t).

11.By means of the Laplace transform, express the solution of the following IVP in
terms of a convolution integral:

y'+y=g(t), y(0)=y'(0)=0. (0.27)

10 Points
Solution

Taking the Laplace transform of both sides of the ODE with (trivial) data we get

(s*+1) L[y](s) = £[9](s) = L[y](5) = 321+1~1:[g](s)=L[(sin*g)(t)](s)

= (0.28)
y(t) = (sin* ) (t) = [ sin(t-7)g(z)dz.

12. A system of 2, first order, linear, homogeneous, ordinary differential equations
appears as

X" =P(t)x. (0.29)
Suppose, over the relevant interval(s), we have the following fundamental set of

solutions of (0.29):
{x(l) (t),x? (t)} - {ﬁt}rll}} (0.30)

What is the Wronskian of this fundamental set? Where is P(t) continuous?
Explain.

10 points



10

Solution
We have

2t t41
W[x(l),x(z)](t)=det{lt t; }zt—(tﬂ):t—l, (0.31)

which vanishes at, and only at, t =1. Thus, according to the relevant theorem, P(t) may
be continuous everywhere but t =1, where it must in fact be singular.

13.The general solution of a system of 2, first order, linear, homogeneous, constant
coefficient ordinary differential equations appears as

X(t) = cl[ﬂ e* +c, [_12} e (0.32)

Sketch a phase portrait of these dynamics.

5 points

Solution

Mathematica gives the following output with input
StreamPlot[{x + y, 4x + y}, {x, —3,3}, {y, —3,3}] (which input comes from thinking about
what the matrix A must be in writing the system as x’' = Ax):



11
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The picture can be obtained “from scratch” by realizing that (0.32) indicates that

@) . 1 3t (2) . 1 -t
X (t)._{z}e, and x (t).{_z}e

are special solutions of the indicated equation, special in that trajectories given by them

are (separately) straight lines through the origin, i.e. subspaces of R?, the first of which
having solutions emanating (as in the above plot) away from the origin (towards infinity),
the second of which having solutions tending to the origin (from infinity), and that other
trajectories/integral curves arise from extrapolating in the indicated way between these

special solutions.



